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В	работе	рассмотрена	одна	модель	динамических	систем	в	
форме	 линейного	 дифференциального	 включения	 с	
параметром	 управления	 и	 в	 условиях	 неполноты	
информации	 	 о	 начальном	 состоянии.	 Изучена	 	 задача	
управления	 ансамбля	 траекторий	 системы	 	 по	 критерию	
минимакса.	 Данная	 задача	 исследована	 методами	
негладкого	 и	 многозначного	 анализа.	 Получены	
необходимые	и	достаточные	условия	оптимальности.	

	
1. ВВЕДЕНИЕ	
Актуальные	 прикладные	 задачи,	 встречающихся	 в	 экономическом	

планировании	 и	 организации	 производства,	 при	 проектировании	 технических	
устройств	и	управления	технологическими	процессами	и	в	других	областях	приводят	
разнообразным	 задачам	 оптимизации.	 Среди	 них	 особый	 интерес	 представляют	
негладкие	 задачи,	 задачи	 управления	 в	 условиях	 неопределенности,	 задачи	
управления	 ансамбля	 траекторий	 и	 другие	 тесно	 связанные	 с	 ними	 проблемы	
построения	 программного	 и	 позиционного	 управления	 [1]-[5].	 К	 настоящему	
времени	 интенсивно	 развивается	 негладкий	 анализ,	 интервальный	 	 анализ,	
многозначный	анализ	и		все	более	расширяется		область	их		приложений	к	задачам	
оптимизации.		

Эффективность	 методов	 решения	 каждой	 негладкой	 задачи	 оптимизации	
существенно	 зависит	 от	 вида	 и	 свойств	 целевых	 функций,	 а	 также	 и	 специфики	
ограничений	 на	 	 параметры.	 Часто	 возникают	 негладкие	 целевые	 функции	 типа	
максимума	или	минимума.	К	задачам	оптимизации	с	такими	критериями	приводят,	
в	 частности,	 принципы	 минимакса	 и	 максимина,	 основанные	 на	 оптимизации	
гарантированного	значения	критерия	качества	управления	[2].		

Задачи	 управления	 и	 наблюдения	 в	 условиях	 неполноты	 информаций	
различного	 типа	 составляют	 большой	 класс	 задач	 математической	 теории	
оптимального	управления.	В	исследованиях	моделей	систем	управления		в	условиях	
информационных	ограничений		большой	интерес	представляют		свойства	ансамбля	
(пучка)	траекторий,	методы	оценки	достижимости	и	прогноза	фазового	состояния	
системы,	условия	гарантированного	управления,	задача	минимаксного	синтеза	и	др.	
[3]-[5].	В	исследованиях	таких	задач		большое	значение	имеют		методы		выпуклого	
анализа	и	теории			дифференциальных	включений	[6]-[9].		

Дифференциальные	 включения	 имеют	 многочисленные	 	 приложения	 	 в	
теории	 оптимального	 управления	 и	 в	 других	 областях	 математических		
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исследований.	 Развиваются	 исследования	 задач	 оптимизации	 для	
дифференциальных	включений	с	запаздываниями,	дифференциальных	включений	с	
нечеткой	правой	частью	и		других	классов	дифференциальных	включений		[10]–[13].		

Одним	 из	 развивающихся	 направлением	 в	 теории	 дифференциальных	
включений	 и	 их	 приложениям,	 является	 дифференциальные	 включения	 с	
управляющими	 и	 другими	 параметрами	 [13]-[16].	 	 Исследование	 таких	 задач,	 как	
динамика	 семейства	 (ансамбля)	 траекторий	 дифференциальных	 включений	
относительно	 параметров	 и	 начальных	 данных,	 	 управляемость	 ансамбля	
траекторий	 на	 заданное	 терминальное	 множество,	 оптимизация	 управления		
ансамбля	траекторий	по	заданным	критериям	представляют	большой	интерес	для	
задач	 управления	 в	 условиях	 ограниченности	 информации	 и	 в	 конфликтных	
ситуациях.		

В	данной	работе	рассматривается	модель	динамической	системы	управления	с	
параметром	 неконтролируемых	 внешних	 воздействий	 и	 неточным	 начальным	
состоянием.	 	 Цель	 управления	 в	 такой	 системе	 предусматривает	 достижения	
наилучшего	результата	с	учетом		наиболее	неблагоприятных		воздействий	внешних	
сил	и		неполноты	информации	о	начальном	состоянии		системы.	Согласно	этой	цели	
сформулирована	 задача	 управления	 ансамблем	 траекторий	 системы	 в	 виде	
негладкой	задачи	минимаксного	типа.		Для	данной	задачи		изучены	необходимые	и	
достаточные	 условия	 оптимальности.	 Применены	 методы	 теории	
дифференциальных	включений,	 выпуклого	и	многозначного	 анализа.	Полученные	
результаты	составляют	теоретическую	базу	при	разработке	алгоритма		построения	
оптимального	 управления.	 Результаты	 данной	 работы	 	 развивают	 исследования	
[17]–[19].	

2.	МАТЕРИАЛЫ	И	МЕТОДЫ	ИССЛЕДОВАНИЯ	
2А.Динамическая	 система	 управления	 в	 условиях	 неполноты	

информации.	 Используем	 обозначение:	 	 –	 -мерное	 евклидово	 пространство	
векторов	 ,	 	–	норма	вектора	 ,	 	–	скалярное	произведение	векторов	

	и	 .		Рассмотрим		динамическую	систему,	состояние	которой	 	на	
заданном	 отрезке	 времени	 	 определяется	 как	 решение	 векторного	
дифференциального	уравнения		

																																					 .																																										(1)	

В	 данной	 модели	 динамической	 системы	 имеются	 параметры	 двух	 типов:	
–	 параметры	 управления;	 –	 параметры	

неконтролируемых	внешних	воздействий.	В	качестве	допустимых	управлений	будем	
выбирать	 измеримые	 	 функции	 ,	 принимающие	 значения	 из	 компакта	

.	 Информация	 о	 параметрах	 	 внешних	 воздействий	 минимальна,	 т.е.	 будем	
считать,	что	они	представляют	собой	некоторую	измеримую	функцию	 ,	
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со	значениями	из	компакта	 ,	причем	конкретная	их	реализация	в	 	процессе	
управления	 заранее	 	 неизвестно.	 Кроме	 того,	 будем	 предполагать,	 что	 начальное	
состояние	 	системы	 	также	неизвестно	заранее	и	задано	лишь	ограничение	на	

допустимые	значения	этой	величины,		а	именно	 ,	где	 –		компакт	из	 .	При	
таких	предположениях	рассматриваемое	уравнение	(1)	представляет	собой	модель	
систему	 управления	 в	 условиях	 неполноты	 информации	 относительно	
неконтролируемых	внешних	возмущающих	сил	и	начального	состояния.		

Множество	всех	допустимых	управлений		 	обозначим		 ,	а	множество	
всех	 возможных	 реализаций	 	 внешних	 	 возмущающих	 сил	 обозначим	 .	
Чтобы	 при	 конкретной	 реализации	 параметров	 	 и	 ,	 а	 также	
начального	состояния	 ,	можно	было	определить		единственную		абсолютно	
непрерывную	 траекторию	 ,	 на	 правую	 часть	 уравнения	 следует	
налагать	определенные	условия	[20],	например,	измеримость	компонент	 -вектор	
функции	 	 по	 переменной	 	 ,	 непрерывность	 по	 совокупности	
переменных	 	 и	 ограничение	 на	 рост	 функции	 	 	 вида	

	 или	 вида	 ,	 где	 –	
неотрицательная	суммируемая	на	 	функция.		

Предполагая	 выполненными	 условия	 	 существования	 и	 единственности	
траекторий	 	 системы	 	 (1)	 при	 заданном	 	 в	 каждый	 момент	 времени	 	
определим	множество		

					 ,																					(2)	
объединяющее	концов	в	момент	времени	 	всех	траекторий	системы	при	

всевозможных	 значениях	 начального	 состояния	 и	 	 внешних	 возмущающих	 сил.	
Многозначное	 отображение	 	 называется	 	 ансамблем	
траекторий	 системы	 (1),	 порожденным	 множеством	 начальных	 состояний	 ,	
управлением	 	и	множеством	внешних	воздействий	 .		

Для	 	 системы	 (1)	 представляет	 интерес	 также	 семейство	 	 всех	
абсолютно	 непрерывных	 траекторий	 	 ,	 соответствующих	
управлению	 	 	 	и	всевозможным	парам	 .	При	заданных	выше	
условиях	 на	 правую	 часть	 уравнения	 (1)	 множество	 	 является	
предкомпактным	 множеством	 пространства	 непрерывных	 на	 	 	 -вектор	
функций	 	 	 с	 нормой	 .	 При	 дополнительном	 условии		

выпуклости	 и	 замкнутости	 множества	 	 семейство	

	 будет	 компактом	 пространства	 .	 При	 	 более	 сильных	 условиях	
можно	получить	выпуклость	множества	 .	Таким	достаточным	условием	
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является	 вогнутость	 опорной	 функции	 	 по	

переменной	 	 и	 выпуклость	 компакта	 [8],[9].	 Как	 нетрудно	

заметить,	 что	 из	 выпуклости	 и	 компактности	 множества	 	 	 следует	
выпуклость	и	компактность	множеств	 .		

	Все	 эти	 	 приведенные	 свойства	 ансамбля	 траекторий	 	 и	
семейства	 абсолютно	 непрерывных	 траекторий	 	 можно	 получить	 как	
следствие	из	результатов	теории	дифференциальных	включений.	Чтобы	убедится	на	
этом	 нам	 достаточно	 представить	 рассматриваемую	 систему	 управления	 в	 виде	
управляемого	дифференциального	включения	

																																 ,																																																				(3)	

где	 .	 При	 сделанных	 на	 правую	 часть	 уравнения	 	 (1)	
допущениях,	 	 рассматриваемая	 система	 управления	 в	 условиях	 неполноты	
информации	о	параметрах	 	описывается		дифференциальным		включением	(3).		
Этому	легко	убедится,	используя	результаты	теории	дифференциальных	включений	
и	известную	лемму		Филиппова	из	теории	многозначных	отображений	[9].	

2Б.	 Линейное	 управляемое	 дифференциальное	 включение.	 Рассмотрим	
систему	 с	 неполными	 данными,	 которая	 описывается	 дифференциальным	
включением	с	параметром	управления:	

																					 .			 	 																											(4)	

где	 -вектор	 состояния,	 -вектор	 управления	 со	 значениями	 из	
компакта		 ,	 	–	 -матрица,	 	–	непустой	компакт	из	 .		

На	 правую	 часть	 дифференциального	 включения	 (4)	 	 будем	 налагать	
следующие	 условия:	 1)	 элементы	 матриц	 	 суммируемы	 на	 ;	 2)	
отображение	 	 измеримо	 по	 	 и	 непрерывно	 по	 	 причем	

,	где	 –суммируемая	на	T	функция.		При	этих	условиях		

каждому	 измеримому	 управлению	 	 из	 множества	 допустимых	
управлений	 	 и	 начальному	 условию	 и	 	 	 соответствует	 абсолютно	
непрерывные	решения	(траектории)	 	дифференциального	включения	
(4)	.	Пусть		 	–	множество	абсолютно	непрерывных	траекторий	 	
дифференциального	 включения	 (4),	 соответствующих	 управлению	 	 и	
всевозможным	начальным	состояниям	 	из	 заданного	компакта:	 	 	 .	
Приведенные	условия	достаточны	для	выпуклости	и	предкомпактности	множества	

.	 При	 дополнительном	 условии	 выпуклости	 	 значений	
многозначного	 отображения	 	 и	 выпуклости	 компакта	 	 множество	
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	 является	 выпуклым	 компактом	 из	 .	 Эти	 свойства	 легко	 следует	 из	
результатов	теории	управляемых	дифференциальных	включений	[13],[14].			

Теперь	рассмотрим	ансамбль	траекторий	дифференциального	включения	(4),	
т.е.	 	 многозначное	 отображение	 ,	 определяемое	 как	

.	 Из	 компактности	 и	 выпуклости	
множества	 		следует	компактность	и	выпуклость	значений	многозначного	
отображения	 .	 	 Однако,	 свойства	 выпуклости	 и	 замкнутости	
множеств	достижимости	 	дифференциального	включения	(4)	имеют	
места	 без	 предположения	 выпуклости	 значений	 многозначного	 отображения	

,	 если	 только	 потребовать	 выпуклость	 и	 компактность	 начального	
множества	 .	Это	утверждение	вытекает	из	следующего	представления	множества	
достижимости	[13]:		

															 ,																																					(5)	

где	 –фундаментальная	 матрица	 решений	 уравнения	

( единичная	матрица).	Из	теории	многозначных	отображений	

следует,	что	при	выполнении	приведенных	условий	на	многозначное	отображение	

	интеграл	 	 является	непустым	выпуклым	компактом	

из		 .	
В	(5)	множество	 	представлено	как	алгебраическая	сумма	двух	

множеств.	 При	 компактности	 начального	 множества	 	 множество	 	 также	

будет	 компактом	 ,	 при	 дополнительном	 условии	 выпуклости	 ,	 –	 выпуклым	
компактом.	 Следовательно,	 при	 выуклой	 компактности	 начального	 множества	 		
множество	достижимости		является	выпуклым	компактом	из		 .	

В	 дальнейшем	 будем	 предполагать,	 что	 начальное	 множество	 	 является	
выпуклым	 компактом.	 Тогда,	 учитывая	 сказанное	 выше	 и	 используя	 свойства	
опорных	функций,	можно	сформулировать	следующее	утверждение.	

Лемма	 1.	 	 Множество	 достижимости	 	 	 является	 выпуклым	
компактом	 ,	причем	его	опорная	функция	выражается	формулой:	

	 .														(6)	

2В.	 Задача	 управления	 ансамблем	 траекторий	 по	 терминальному	
функционалу.	Для	 моделей	 вида	 (4)	 одним	 из	 важных	 вопросов	 является	 задача	
управления	ансамбля	траекторий		по	некоторому	критерию		оптимизации.		Одним	из	
таких	 критериев,	 часто	 используемых	 в	 	 задачах	 оптимизации,	 является	
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терминальный	 	 функционал	 ,	 ,	 где	 –	 заданная	
функция	аргумента	 .	Гарантированным	значением	данного	функционала		для	
системы	 (4)	 назовем	 	 величину	 .	 Учитывая	 вид	

терминального	 функционала	 	 ,	 нетрудно	 заметить,	 что	
.	

Приведем	 два	 результата	 для	 	 ,	 когда	 терминальный	

функционал	 	 определяется	 выпуклыми	 или	 вогнутыми	 функциями		
,	 .		
Лемма	 2.	 Пусть	 ,	 –	 выпуклая	 функция,	 а	 –	 ее	 сопряженная	

функция.		Тогда:		
																									 .																																(7)	

Лемма	3.	Пусть	 ,	 –	вогнутая	функция.	Тогда:		
																								 .																				(8)	

Формулу	(7)	легко	можно	получит,	используя	выражение	выпуклой	функции	
через	 его	 сопряженной	 	 ,	 и	 свойств	 сопряженной	 функции.		

Формула	(8)	получается	из	(7)	как		следствие,	если	учесть,	что	функция	 	–	
выпуклая	 при	 вогнутости	 функции	 ,	 .	 Подробные	 доказательства	 этих	
утверждений	можно	найти	в	[13].	

Теперь	 рассмотрим	 следующую	 задачу	 управления	 ансамблем	 траекторий	
системы	(4):		

																 .																																							(9)		

Предположим,	что	в	задаче	(9)	функция	 ,	 	имеет	вид		

																																										 ,																												(10)	

	где	 –	 -матрица,	 	 и	 –	 компактные	 подмножества	 .	 Данную	
функцию	можно	записать	так:		

						 .	

	Из	 такого	 представления	 ясно,	 что	 функция	 	 является	 негладкой	
функцией		типа	минимума.		

3.РЕЗУЛЬТАТЫ	ИССЛЕДОВАНИЯ	
Задача	 (9)	 является	 минимаксной	 задачей	 терминального	 управления	

ансамбля	 траекторий	 системы	 (4).	 	 Изучим	 необходимые	 и	 достаточные	 условия	
оптимальности	в	данной	задаче,	когда	терминальный	функционал		имеет	вид	(10).		
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	В	рассматриваемой	 задаче	 терминальный	функционал	 ,	 	 обладает	
свойством	 	 вогнутости.	 Поэтому	 для	 задачи	 (9)	 	 можно	 применить	 условия	
оптимальности,	полученных	для	такого	типа	задач	с	вогнутыми	 	 	терминальными	
функционалами	[13].	В	задачах	оптимизации	для	управляемых	дифференциальных	
включений	 для	 получения	 условий	 оптимальности	 могут	 быть	 использованы		
представления	(7)	или	(8).		

Однако,	учитывая	специфику	задания		терминальной	функции	(10),	мы	будем	
использовать	 другое	 представление	 	 функционала	 ,	 которое	

получается	 после	 применения	 известной	 теоремы	 о	 минимаксе	 из	 выпуклого	
анализа	[5,	c.286],[6]:		

																	 ,																			(11)	

где		 –	выпуклая	оболочка		множества	 .	
Учитывая		формулу	(6),		равенство	(11)		запишем	в	следующем	виде:	

			 .								(12)	

	Пусть	 –	абсолютно	непрерывное	решение	уравнения						 		с	

начальным	 условием	 .	 Такая	 функция	 имеет	 представление	
.	Тогда	равенство	(12)	можем	записать	в	виде:	

	 .								(13)	

Теорема	1.	Пусть	 –	оптимальное	управление	в	задаче	(9).	Тогда	почти	
для	всех	 	имеет	место	равенство	

																	 ,																															(14)	

где	 ,	 –	 произвольная	 точка	 глобального	
минимума	функции			

												 																			(15)	

на	множестве	 .		
Доказательство.	 Если	 –	 оптимальное	 управление	 в	 задаче	 (9),	 то	

,	т.е.	согласно	(12)	

	 												(16)	
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Функция	 ,	 ,	 определенная	 формулой	 (15),	 является	
непрерывной,	и		поэтому	существует		 –	точка	глобального	минимума	этой	функции	
на	выпуклом	компакте	 .	Учитывая	это,	из	(16)	получим	

							 	

Следовательно,		

.	

Теперь,	 пологая	 ,	 и	 используя	 свойств	 интеграла	 Лебега,	 из	
последнего	равенства	получим,	что	почти	для	всех	 	имеет	место	равенство	(14).	

Лемма	 4.	 Если	 –	 оптимальное	 управление	 в	 задаче	 (9),	 то	 каждая	
точка	глобального	минимума	 функции	(15)	является,	точкой	глобального	
минимума	функции		

				 , .													(17)	

Утверждение	леммы	следует	из		следующей	цепочки		соотношений:	

	

.	

Теорема	2.	Для	оптимальности	управления	 	в	задаче	(9)	необходимо	
и	достаточно	существование	 –	точки	глобального	минимума	функции	 	
вида	(17)	и	выполнения	условия	(14)	почти	для	всех	 .	

Доказательство.	Необходимая	часть	теоремы	следует	из	теоремы	1	и	леммы	
4.		

Достаточность.	Пусть	 –	точка	глобального	минимума	функции	 ,	
а	управление	 		почти	для	всех	 	удовлетворяет	условию	(14).	Тогда:		

												 .	

Учитывая	полученное	равенство,	в	силу	представления	(13)	имеем:	

	

.	
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Поскольку		 ,	то	из	полученных	соотношений	следует,	что		

,	т.е.	 –	оптимальное	управление	в	задаче	(9).	

4.ЗАКЛЮЧЕНИЕ		
Полученные	 условия	 оптимальности	 в	 минимаксной	 задаче	 (9)	 управления	

ансамбля	 траекторий	 системы	 (4)	 показывают,	 что	 для	 построения	 оптимального	
управления	 следует	 сначала	 разрешение	 конечномерной	 задачи	 оптимизации:	

.	Если		 	–	решение	этой	задачи,	то	оптимальное	управление	
	определяется	из	условия	(14),	как	результат	решения	параметризованной	

задачи	оптимизации:			

																							 .		

Итак,	 проведенные	 исследования	 позволили	 приведения	 решения	
бесконечномерной	 задачи	негладкой	оптимизации,	 сформулированной	как	 задачи	
управления	 ансамбля	 траекторий	 	 динамической	 системы	 в	 условиях	 неполноты	
информации,	 к	 	 двум	 последовательно	 решаемых	 задачам	 конечномерной	
оптимизации.	Следует	отметить,	что	для	решения	этих	задачи	существует	хорошо	
развитый	 математический	 аппарат	 в	 виде	 методов	 математического	
программирования.		
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